Calculation formulas

1. Dynamic load rating
(N) and

Basic life rating

$$
L_{10}=\left(\frac{C_{a}}{F_{m}}\right)^{3} \text { or } C_{\text {req }}=F_{m}\left(L_{10}\right)_{\text {req }}^{1 / 3}
$$

$\mathrm{L}_{10}=$ life (million of revolutions)
$\mathrm{C}_{\mathrm{a}}=$ basic dynamic load rating
$\mathrm{C}_{\text {req }}=$ required dynamic load rating
$\mathrm{F}_{\mathrm{m}}=$ cubic mean load (N)
2. Cubic mean load
(N)

$$
F_{m}=\frac{\left(F_{1}{ }^{3} L_{1}+F_{2}{ }^{3} L_{2}+F_{3}^{3} L_{3}+\ldots\right)^{1 / 3}}{\left(L_{1}+L_{2}+L_{3}+\ldots\right)^{1 / 3}}
$$

$$
F_{m}=\frac{F_{\min }+2 F_{\max }}{3}
$$

3. Critical speed of screw shaft
(no safety factor)
(rpm)
(a factor of 0,8 is generally recommended)
4. Speed limit of the mechanism
(maxi speed applied through very short periods)

For instance: $\mathrm{nxd} \mathrm{d}_{0}<50000$ with composite inserts for SX - SN $n \times d_{0}<90000$ for SL if >50 000/90 000, consult SKF
$\mathrm{d}_{2}=$ root diameter (mm)
| = free length, or distance between the two support bearings (see page 6)
$\mathrm{f}_{1}=0,9 \bullet \quad$ fixed, free $\begin{array}{ll}3,8 \\ 5,6 & \bullet\end{array}$ fixed, supported fixed, fixed
$\mathrm{n}=$ revolutions per minute
$\mathrm{d}_{0}=$ screw shaft nominal diameter
$\mathrm{d}_{2}=$ root diameter (mm)
I = free length, or distance between
the two support bearings (see page 6)
$\mathrm{f}_{3}=$ mounting correction factor

$K=0,02$ for $S H$
$K=0,018$ for $S X, S L, S N, T N$, PN, TL
$\mathrm{d}_{0}=$ nominal diameter of screw shaft
$P_{h}=$ lead (mm)
7. Practical efficiency
$\left(\eta_{p}\right)$

$$
\mathrm{F}_{\mathrm{c}}=\frac{34000 \cdot \mathrm{f}_{3} \cdot \mathrm{~d}_{2}^{4}}{\mathrm{f}^{2}}
$$

6. Theoretical efficiency

- direct
(η)

- indirect
(η^{\prime})

$$
\eta^{\prime}=2-\frac{1}{\eta}
$$

-

The value 0,9 used is an average value between the practical efficiency of a new screw and that of a properly run in screw. It should be used for industrial applications in all normal working conditions. For extreme cases, call us.

Calculation formulas

8. Input torque in a steady state (Nm)
9. Power required in a steady state (W)
10. Preload torque
(Nm)

$$
T_{p r}=\frac{F_{p r} \cdot P_{h}}{1000 \cdot \pi}\left(\frac{1}{\eta_{p}}-1\right)
$$

11. Restraining torque
(Nm)
(considering system backdriving)

$$
T=\frac{F \cdot P_{h}}{2000 \cdot \pi \cdot \eta_{p}}
$$

$\mathrm{F}=$ maximum load of the cycle (N)
$P_{h}=$ lead (mm)
$\eta_{p}=$ practical efficiency
n = revolutions per minute
$\mathrm{F}_{\mathrm{pr}}=$ preload force between a nut and the shaft (N)
12. Nominal motor torque when accelerating (Nm)

For a horizontal screw
$T_{t}=T_{f}+T_{p r}+\frac{P_{h}\left[F+m_{L} \cdot \mu_{f} \cdot g\right]}{2000 \cdot \pi \cdot \eta_{p}}+\dot{\omega} \Sigma l$

For a vertical screw
$T_{t}=T_{f}+T_{p r}+\frac{P_{h}\left[F+m_{L} \cdot g\right]}{2000 \cdot \pi \cdot \eta_{p}}+\dot{\omega} \Sigma l$

$$
\begin{aligned}
& \text { For a horizontal screw } \\
& \mathrm{T}_{\mathrm{t}}^{\prime}=\mathrm{T}_{\mathrm{f}}+\mathrm{T}_{\mathrm{pr}}+\frac{\mathrm{P}_{\mathrm{h}} \cdot \eta^{\prime} \cdot\left[\mathrm{F}+\mathrm{m}_{\mathrm{L}} \cdot \mu_{\mathrm{f}} \cdot g\right]}{2000 \cdot \pi}+\dot{\omega} \Sigma \mathrm{l} \\
& \text { For a vertical screw } \\
& \mathrm{T}_{\mathrm{t}}=\mathrm{T}_{\mathrm{f}}+\mathrm{T}_{\mathrm{pr}}+\frac{\mathrm{P}_{\mathrm{h}} \cdot \eta^{\prime} \cdot\left[\mathrm{F}+\mathrm{m}_{\mathrm{L}} \cdot g\right]}{200 \cdot \pi}+\dot{\omega} \Sigma \mathrm{l} \\
& \hline
\end{aligned}
$$

$I_{L}=m_{L}\left(\frac{P_{h}}{2 \pi}\right)^{2} 10^{-6}$
$\eta^{\prime}=$ theoretical indirect efficiency
$I_{M}=$ inertia of motor $\left(\mathrm{kgm}^{2}\right)$
$I_{S}=$ inertia of screw shaft per metre ($\mathrm{kgmm}^{2} / \mathrm{m}$)
। = length of screw shaft (mm)

