ABBA Linear Ball Rail ---- $B R$ series

International Standard Dimension Design

Characteristics of ABBA Linear Ball Rail

Smooth running due to new ball re-circulation (patent)

International Standard Dimension Design

Comparison of ABBA 4-row circular arc and 2-row Gothic arch

Comparison :

1. Light motion : The circular arc design has the smaller differential slip than Gothic arch.
2. Low installation accuracy : The circular arc design can achieve the ideal two-point contact structure. When balls occur elastic deformation at the contact points, the circular arc design has the better ability of absorbing errors on the installation surfaces without compromising smooth, light motion.
3. Low frictional resistance : Due to the two-point contact structure for the circular arc design, even when we preload to the intended rigidity, the friction will not significantly increase.
4. High load rating : The radius of curvature of the ball rolling track for the circular arc design is $\mathbf{5 2}$ to $\mathbf{5 3 \%}$ of the ball diameter and the Gothic arch is 55 to $\mathbf{6 0 \%}$.

International Standard Dimension Design

Unit : mm

ITEM GRADE	$\begin{array}{\|c\|} \hline \text { Normal } \\ (\mathbf{N}) \end{array}$	High (H)	Precision (P)	$\begin{array}{\|c} \hline \text { Super-Precision } \\ \text { (SP) } \end{array}$	Ultra-Precision (UP)
Tolerance of height (H)	± 0.1	± 0.04	$\begin{gathered} 0 \\ -0.04 \end{gathered}$	$\begin{gathered} 0 \\ -0.02 \end{gathered}$	$\begin{gathered} 0 \\ -0.01 \end{gathered}$
Tolerance of width (W)	± 0.1	± 0.04	$\begin{gathered} \hline 0 \\ -0.04 \end{gathered}$	$\begin{gathered} \hline 0 \\ -0.02 \end{gathered}$	$\begin{gathered} \hline 0 \\ -0.01 \end{gathered}$
Difference of heights ($\Delta \mathbf{H}$)	0.03	0.02	0.01	0.005	0.003
Difference of widths ($\Delta \mathbf{W}$)	0.03	0.02	0.01	0.005	0.003
Running parallelism of BR Blocksurface \mathbf{C} with respect to surface \mathbf{A}	\triangle C Refer to Fig.4-1				
Running parallelism of BR Block surface D with respect to surface	\triangle D Refer to Fig.4-1				

Fig. 4-1 BR rail length and running parallelism

International Standard Dimension Design

Preload grade

ITEM		
GRADE $:$ Basic dynamic load rating		
Clearance	Symbol	Preload force
No Preload	ZF	0
Light Preload	Z 1	0
Middle Preload	Z 2	0.02 C
Heavy Preload	Z 3	0.05 C

Radial clearances

Unit: um

Type $\mathbf{S y m b o l}$	$\mathbf{Z F}$	$\mathbf{Z 0}$	$\mathbf{Z 1}$	$\mathbf{Z 2}$	$\mathbf{Z 3}$
$\mathbf{B R ~ 1 5}$	$4 \sim 14$	$-4 \sim 4$	$-12 \sim-4$	$-20 \sim-12$	$-28 \sim-20$
BR 20	$5 \sim 15$	$-5 \sim 5$	$-14 \sim-5$	$-23 \sim-14$	$-32 \sim-23$
BR $\mathbf{2 5}$	$6 \sim 16$	$-6 \sim 6$	$-16 \sim-6$	$-26 \sim-16$	$-36 \sim-26$
BR 30	$7 \sim 17$	$-7 \sim 7$	$-19 \sim-7$	$-31 \sim-19$	$-43 \sim-31$
BR 35	$8 \sim 18$	$-8 \sim 8$	$-22 \sim-8$	$-35 \sim-22$	$-48 \sim-35$
BR $\mathbf{4 5}$	$10 \sim 20$	$-10 \sim 10$	$-25 \sim-10$	$-40 \sim-25$	$-55 \sim-40$
BR $\mathbf{5 5}$	$12 \sim 22$	$-12 \sim 12$	$-29 \sim-12$	$-46 \sim-29$	$-63 \sim-46$

Rigidity of ABBA Linear Ball Rail with $\mathbf{Z} 2$ preload

Unit : kgf/um

Type		Rigidity	Type
BR 20	50	BR 35	80
BR 25	58	BR 45	125
BR 30	66	BR 55	190

(A4) ABBA Linear Ball Rail ---- $B R$ series

International Standard Dimension Design

Interchangeable and Non-interchangeable

	Non-interchangeable					Interchangeable	
Accuracy	UP	$\mathbf{S P}$	\mathbf{P}	\mathbf{H}	\mathbf{N}	\mathbf{H}	\mathbf{N}
Preload			Z 0	Z 0	Z 0		ZF
	Z 1	Z 1	Z 1	Z 1	Z 1	Z 0	Z 0
	Z 2	Z 2	Z 2	Z 2	Z 2	Z 1	Z 1
	Z 3	Z 3	Z 3	Z 3	Z 3		

Suggestion in Assembly for ABBA Linear Ball Rail
Grinding Surface

Ra

imum Fillet

ITEM	Maximum Fillet (Ra)	Maximum Height (Hr) rail shoulder	Maximum Height (Hs) block shoulder	Rail Bolt Length (Lb) suggestion
BR 15	0.8	4	5	M4*16
BR 20	0.8	4.5	6	M5*20
BR 25	1.2	6	7	M6*25
BR 30	1.2	8	8	M8*30
BR 35	1.2	8.5	9	M8*30
BR 45	1.6	12	11	M12*40
BR 55	1.6	13	12	M14*45

ABBA Linear Ball Rail ---- BR series
 International Standard Dimension Design

Permissible tolerances of mounting surfaces

Unit: um

ITEM	Permissible tolerances for parallelism (e1 $)$									
	$\mathbf{Z 3}$	$\mathbf{Z 2}$	$\mathbf{Z 1}$	$\mathbf{Z 0}$	$\mathbf{Z F}$	$\mathbf{Z 3}$	$\mathbf{Z 2}$	$\mathbf{Z 1}$	$\mathbf{Z 0}$	$\mathbf{Z F}$
BR 15			18	25	35			85	130	190
BR 20		18	20	25	35		50	85	130	190
BR 25	15	20	22	30	42	60	70	85	130	195
BR 30	20	27	30	40	55	80	90	110	170	250
BR 35	22	30	35	50	68	100	120	150	210	290
BR 45	25	35	40	60	85	110	140	170	250	350
BR 55	30	45	50	70	95	125	170	210	300	420

Tightening torque of screw

Definition of Load and Life

Basic static load rating: C0

When a linear motion system in the static state or in motion is subject to an extreme load or impact, a permanent deformation will occur between raceway and rolling elements. If the deformation is excessive, the linear motion system can not travel smoothly.

Now, we define the basic static load rating C 0 is a static load of constant magnitude acting in one direction under which the sum of the permanent deformations of rolling elements and raceway equals 0.0001 times the diameter of the rolling elements.

Static permissible moment: M0

When a linear motion system is subject to a moment load, the maximum stress occurs in the rolling elements at both ends. The static permissible moment M0 is a moment of constant magnitude acting in one direction under which the sum of the permanent deformations of rolling elements and raceway equals 0.0001 times the diameter of the rolling elements.

Basic static permissible moment: Mx , My, Mz

In the linear motion system, we define basic static permissible moments Mx, My and Mz are the moments of the static permissible moment M 0 in X, Y and Z direction.

Static safety factor: fs

Static safety factor fs is the ratio of the basic static load rating C 0 to the load acting on the linear motion system.

$$
\mathrm{fs}=(\mathrm{fc} * \mathbf{C 0}) / \mathrm{P} \quad \text { or } \quad \mathrm{fs}=(\mathrm{fc} * \mathrm{M} 0) / \mathrm{M}
$$

fs : static safety factor
C 0 : basic static load rating
fc : Contact factor

P : design load
M0 : static permissible moment
M : design moment
Reference value of static safety factor fs shown below :

Operating condition	Load condition	Minimum fs
Normally stationary	Small impact and deflection	$1.0 \sim 1.3$
	Impact or twisting load are applied	$2.0 \sim 3.0$
Normally moving	Small impact or twisting load are applied	$1.0 \sim 1.5$
	Impact or twisting load are applied	$2.5 \sim 5.0$

Nominal life: L

The nominal life L is the total distance of travel reached without flaking by 90% of a group of identical

ABBA Linear Ball Rail ---- BR series
 International Standard Dimension Design

linear motion system that are operated independently under the same condition.

Basic dynamic load rating: C

When each of a group of identical linear motion system is applied independently under the same condition, basic dynamic load rating C is the load of constant magnitude acting in one direction that results in a nominal life of 50 km for a system using balls.

Contact factor: fc

In linear motion system, it is hard to obtain uniform load distribution in close contact installation due to moments, errors on the mounting surfaces and other factors. When two or more blocks in a rail are used in close contact, multiply basic load ratings C and C 0 by the contact factors shown below.

Number of blocks in close contact	Contact factor
$\mathbf{2}$	0.81
$\mathbf{3}$	0.72
$\mathbf{4}$	0.66
$\mathbf{5}$	0.61
Normal operation	1

Formula of nominal life \mathbf{L}

Given the basic dynamic load rating C and applied load P, the following formulas express the nominal life L of a linear motion system using balls.

$$
\mathrm{L}=\left(\frac{\mathrm{fh} * \mathrm{fT}^{* \mathrm{fc}}}{\mathrm{fw}} \mathrm{X} \frac{\mathrm{C}}{\mathrm{P}}\right)^{3} \mathrm{X} 50
$$

L: nominal life
C : basic dynamic load rating
P : applied load
fh : Hardness factor
fT : Temperature factor
fc : Contact factor
fw : Load factor

[^0]
(A)ABBA Linear Ball Rail ---- $B R$ series
 International Standard Dimension Design

For linear motion system, its optimum load carrying capability is HrC 58 to 64 hardness on the raceways.
If the hardness is lower than HrC 58 , both the basic dynamic load rating and basic static load rating should be multiplied by hardness factor fh .

Temperature factor: $\mathbf{f T}$

When a linear motion system is subject to temperature above $100^{\circ} \mathrm{C}$, the temperature factor should be taken into consideration.

Note 1: When used in above $80^{\circ} \mathrm{C}$, the seals and end plates should be designed for high temperature operation.

International Standard Dimension Design

Note 2: When used in above $120^{\circ} \mathrm{C}$, special treatment should be designed for stabilizing the dimension.

Load factor: fw

Reciprocating motion usually occur vibrations, impacts and variable loads. In general, vibrations occur in high-speed operation, impacts due to repeated starting and stopping and variable loads it is difficult to calculate. When above factor affect the loading conditions significantly, divided basic load ratings C and C 0 by the experimentally obtained load factors shown below.

Impacts and vibrations	Speed (V)	Measured vibration (G)	fw
Without external Impacts or Vibrations	At low speed $\mathrm{V}<=15 \mathrm{~m} / \mathrm{min}$	$\mathrm{G}<=0.5$	$1 \sim 1.5$
Without significant Impacts or Vibrations	At medium speed $15<\mathrm{V}<=60 \mathrm{~m} / \mathrm{min}$	$0.5<\mathrm{G}<=1.0$	$1.5 \sim 2.0$
With external Impacts or Vibrations	At high speed $\mathrm{V}>60 \mathrm{~m} / \mathrm{min}$	$1.0<\mathrm{G}<=2.0$	$2.0 \sim 3.5$

Frictional resistance

The frictional resistance can be calculated from following formula.

$$
\mathrm{F}=\mathrm{u} * \mathrm{~W}+\mathrm{f}
$$

F : frictional resistance
W : load
u : coefficient of friction
f : seal resistance

International Standard Dimension Design

Coefficient of friction : u

Seal resistance : f
Unit : kgf

Model No.	resistance	Model No.	resistance
BR 15	0.3	BR 35	0.7
BR 20	0.4	BR 45	0.9
BR 25	0.4	BR 55	1.0
BR 30	0.5		

(A) ABBA Linear Ball Rail ---- $B R$ series

 International Standard Dimension Design

 International Standard Dimension Design}

Mounting orientations

(4) ABBA Linear Ball Rail ---- $B R$ series International Standard Dimension Design

Fixing methods

International Standard Dimension Design

Mounting procedure

```
set screw
```


Step 1 : Remove dents, burrs and dirt on mounting surfaces.
Step 2 : Place rail against the shoulder of mounting surfaces.
Step 3 : Tighten the mounting bolts lightly.
Note : i. check that holes on rail are aligned with the screw holes on mounting surfaces.
ii . do not tighten a bolt if the holes are not aligned.
Step 4 : Tighten the rail set screws.
Note : i . when tightening the mounting bolts, start with the bolt at the longitudinal center of the rail and move towards both rail ends.
Step 5 : Mount the other rail in the same way.
Step 6 : Install caps in mounting holes.
Step 7 : Place the table on the blocks carefully.
Step 8 : Tightening the block set screw to position the table.
Step 9 : Tighten the mounting bolts on the master and subsidiary blocks.
Note : i. Tighten the mounting bolts in the diagonal sequence.

International Standard Dimension Design

Calculate the applied loads

$$
\begin{aligned}
& \text { Rn }=-\mathrm{Fz} / 4+\left(\mathrm{Fz}^{*}\right. \text { Pfy-Fy*Pfz)/(2*L1)-(Fx*Pfz-Fz*Pfx)/(2*L0) } \\
& \text { Rn }=-\mathrm{Fz} / 4+\left(\mathrm{Fz}^{*}\right. \text { Pfy-Fy*Pfz)/(2*L1)+(Fx*Pfz-Fz*Pfx)/(2*L0) } \\
& \text { Rn }=-\mathrm{Fz} / 4-\left(\mathrm{Fz}^{*}\right. \text { Pfy-Fy*Pfz)/(2*L1)+(Fx*Pfz-Fz*Pfx)/(2*L0) } \\
& \text { Rn }=-\mathrm{Fz} / 4-\left(\mathrm{Fz}^{*}\right. \text { Pfy-Fy*Pfz)/(2*L1)-(Fx*Pfz-Fz*Pfx)/(2*L0) } \\
& \text { Sc }=\mathrm{Fy} / 4+(\mathrm{Fy} * \text { Pfx-Fx*Pfy) } /(2 * \mathrm{~L} 0) \quad \mathrm{S} 2=\mathrm{Fy} / 4-(\mathrm{Fy} * \text { Pfx-Fx*Pfy)/(2*L0) } \\
& \text { Sc }=\text { Fy/4-(Fy*Pfx-Fx*Pfy)/(2*L0) S4=Fy/4+(Fy*Pfx-Fx*Pfy)/(2*L0) } \\
& \nabla \mathrm{X}=(\mathrm{R} 2-\mathrm{R} 1) *(\mathbf{P f z}) /(\mathrm{L} 0 * \mathrm{Kr})+(\mathbf{S 2} 2 \mathbf{S} 1) *(\mathrm{Pfy}) /(\mathrm{L0} 0 \text { Ks }) \\
& \nabla \mathrm{Y}=(\mathrm{R} 2-\mathrm{R} 3) *(\mathrm{Pfz}) /(\mathrm{L} 1 * \mathrm{Kr})+(\mathrm{S} 2-\mathrm{S} 1) *(\mathrm{Pfx}) /(\mathrm{L} 0 * \mathrm{Ks})-(\mathrm{S} 2+\mathrm{S} 1) /(2 * \mathrm{Ks}) \\
& \nabla \mathrm{Z}=(\mathrm{R} 2+\mathrm{R} 4) /(2 * \mathrm{Kr})+(\mathrm{R} 1-\mathrm{R} 2) *(\mathbf{P f x}) /(\mathrm{L} 0 * \mathbf{P f y}) /(\mathrm{L} 1 * \mathrm{Kr})
\end{aligned}
$$

User input data :
Fr : Load in X direction (- or +) kg \quad Fy : Load in Y direction (- or +) kgf

Fz : Load in \mathbf{Z} direction (- or +) kgf
Pay: Position in Y direction (-or +) mm
L0 : Distance in blocks (mm)

Pix : Position in \mathbf{X} direction (- or +) mm
Pf : Positon in \mathbf{Z} direction (- or +) mm
L1 : Distance in rails (mm)

The applied loads for BR Linear Motion System (kgf) :
R1 : Radial load for Block Now. (- or +)
R2: Radial load for Block No. (- or +)

International Standard Dimension Design

R3 : Radial load for Block No3. (- or +)
S1 : Lateral load for Block No1. (- or +)
S3 : Lateral load for Block No3. (- or +)
Deformation (mm) for applied loads :
Kr : Stiffness in Radial direction (kgf/um)
∇ X: Deflection in X direction ($-\mathrm{or}+$) mm
$\nabla \mathrm{Z}$: Deflection in \mathbf{Z} direction ($-\mathrm{or}+$) mm

R4 : Radial load for Block No4. (- or +)
S2 : Lateral load for Block No2. (- or +)
S4 : Lateral load for Block No4. (- or +)

Ks : Stiffness in Lateral direction (kgf/um)
$\nabla \mathrm{Y}:$ Deflection in Y direction (- or +) mm

Example 1 :

This case is divided into three sections.
Section 1 : it is subject to

(W/g)*A(acceleration) ------- Fx(A)
Section 2 : we are subject to

$$
\Rightarrow \text { W(weight) ---------------------- Fx(W) }
$$

Section 3 : we are subject to

$$
\begin{aligned}
& \Rightarrow W(\text { weight }) \text { and } \\
& \text { Fx(W) }
\end{aligned}
$$

International Standard Dimension Design

(W/g)*(-A)(deceleration) ---- Fx(-A)

User input data :

$$
\begin{array}{lrl}
V * V=V 0 * V 0+2 * A * D 1 \Rightarrow & A=(V * V-V 0 * V 0) /(2 * D 1) \\
D 1=1000 ~ m m ~ & & D 2=2000 \mathrm{~mm}
\end{array}
$$

$$
\begin{array}{lllll}
V=1 \mathrm{~m} / \mathrm{s} & \mathrm{~V} 0=0 \mathrm{~m} / \mathrm{s} & \Rightarrow & (\mathrm{~A})=0.5 \mathrm{~m} / \mathrm{s}^{2} & \text { for acceleration } \\
\mathrm{V}=0 \mathrm{~m} / \mathrm{s} & \mathrm{~V} 0=1 \mathrm{~m} / \mathrm{s} & \Rightarrow & (-\mathrm{A})=-0.5 \mathrm{~m} / \mathrm{s}^{2} & \text { for deceleration }
\end{array}
$$

$F x(W)=98 \mathrm{kgf}$	$F y(W)=0$	$F z(W)=0$
$F x(A)=(98 / 9.8) * 0.5=5 \mathrm{kgf}$	$F y(A)=0$	$F z(A)=0$
$F x(-A)=(98 / 9.8) *(-0.5)=-5 \mathrm{kgf}$	$F y(-A)=0$	$F z(-A)=0$

$\mathbf{P f x}=\mathbf{8 0} \mathrm{mm}$
$\mathrm{L} 0=\mathbf{3 0 0} \mathrm{mm}$

Pfy $=\mathbf{2 5 0} \mathbf{~ m m}$
Pfz $=280 \mathrm{~mm}$
$\mathrm{L} 1=\mathbf{5 0 0} \mathbf{~ m m}$
$\mathrm{f} \mathbf{w}=\mathbf{1 . 5}$

Calculation applied loads :

R1 $(W)=-F x(W) * P f z /(2 * L 0)=-45.73 \mathrm{kgf}$
R2 $(W)=F x(W) * P f z /(2 * L 0)=45.73 \mathrm{kgf}$
$R 3(W)=F x(W) * P f z /(2 * L 0)=45.73 \mathrm{kgf}$
$R 4(W)=-F x(W) * P f z /(2 * L 0)=-45.73 \mathrm{kgf}$
$R 1(A)=-F x(A) * P f z /(2 * L 0)=-2.33 \mathrm{kgf}$
$\mathrm{R} 2(\mathrm{~A})=\mathrm{Fx}(\mathrm{A}) * \mathrm{Pfz} /(2 * \mathrm{~L} 0)=2.33 \mathrm{kgf}$
$R 3(A)=F x(A) * P f z /(2 * L 0)=2.33 \mathrm{kgf}$
$R 4(A)=-\mathrm{Fx}(A) * \mathrm{Pfz} /(2 * \mathrm{~L} 0)=-2.33 \mathrm{kgf}$
$\mathrm{R} 1(-\mathrm{A})=-\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfz} /(2 * \mathrm{~L} 0)=2.33 \mathrm{kgf}$
R2(-A) $=\mathbf{F x}(-\mathrm{A}) * \mathbf{P f z} /(2 * \mathrm{~L} 0)=\mathbf{- 2 . 3 3} \mathbf{~ k g f}$
R3 $(-\mathrm{A})=\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfz} /(2 * \mathrm{~L} 0)=-\mathbf{2 . 3 3} \mathbf{~ k g f}$
$\mathrm{R} 4(-\mathrm{A})=-\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfz} /(2 * \mathrm{~L} 0)=2.33 \mathrm{kgf}$
S1 $(W)=-F x(W) * P f y /(2 * L 0)=-40.83 \mathrm{kgf}$
$\mathrm{S} 2(\mathrm{~W})=\mathrm{Fx}(\mathrm{W}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=40.83 \mathrm{kgf}$
$\mathrm{S} 3(\mathrm{~W})=\mathrm{Fx}(\mathrm{W}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=40.83 \mathrm{kgf}$
$S 4(W)=-F x(W) * P f y /(2 * L 0)=-40.83 \mathrm{kgf}$
$S 1(A)=-F x(A) * P f y /(2 * L 0)=-2.08 \mathrm{kgf}$
$\mathrm{S} 2(\mathrm{~A})=\mathrm{Fx}(\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=\mathbf{2 . 0 8} \mathrm{kgf}$
$\mathrm{S} 3(\mathrm{~A})=\mathrm{Fx}(\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=2.08 \mathrm{kgf}$
$\mathrm{S} 4(\mathrm{~A})=-\mathrm{Fx}(\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=-2.08 \mathrm{kgf}$
S1 (-A) $=-\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=2.08 \mathrm{kgf}$
S2(-A) $=\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=-2.08 \mathrm{kgf}$
S3(-A) $=\mathbf{F x}(-\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=-2.08 \mathrm{kgf}$
S4(-A) $=-\mathrm{Fx}(-\mathrm{A}) * \mathrm{Pfy} /(2 * \mathrm{~L} 0)=2.08 \mathrm{kgf}$

The applied load - section 1 :

(4A) ABBA Linear Ball Rail ---- $B R$ series

International Standard Dimension Design

$R 1(1)=R 1(W)+R 1(A)=-48.06 \mathrm{kgf}$
R2(1) $=$ R2 $(\mathrm{W})+\mathrm{R} 2(\mathrm{~A})=48.06 \mathrm{kgf}$
R3(1) $=$ R3 $(\mathrm{W})+\mathrm{R} 3(\mathrm{~A})=48.06 \mathrm{kgf}$
R4 $(1)=$ R4 $(\mathrm{W})+\mathrm{R} 1(\mathrm{~A})=-48.06 \mathrm{kgf}$

The applied load - section 2 :

$$
R 1(2)=R 1(W)=-45.73 \mathrm{kgf}
$$

R2(2) $=\mathbf{R} 2(W)=45.73 \mathrm{kgf}$
R3(2) $=$ R3 $(\mathrm{W})=45.73 \mathrm{kgf}$
$R 4(2)=R 4(W)=-45.73 \mathbf{~ k g f}$

The applied load - section 3 :
R1 $(3)=R 1(W)+R 1(-A)=-43.4 \mathrm{kgf}$
R2(3) = R2(W)+R2(-A) = 43.4 kgf
R3(3) $=$ R3 $(\mathrm{W})+\mathrm{R} 3(-\mathrm{A})=43.4 \mathrm{kgf}$
$R 4(3)=R 4(W)+R 1(-A)=-43.4 \mathrm{kgf}$

S1 $(1)=\mathrm{S} 1(\mathrm{~W})+\mathrm{S} 1(\mathrm{~A})=-42.91 \mathrm{kgf}$
S2(1) $=\mathbf{S} 2(W)+$ S2 $(A)=42.91 \mathrm{kgf}$
S3(1) $=$ S3 $(W)+$ S3 $(A)=42.91 \mathrm{kgf}$
S4(1) $=\mathbf{S 4}(\mathrm{W})+\mathrm{S} 4(\mathrm{~A})=-42.91 \mathrm{kgf}$
$S 1(2)=S 1(W)=-40.83 \mathbf{~ k g f}$
S2(2) $=$ S2 $(W)=40.83 \mathrm{kgf}$
S3(2) $=\mathrm{S} 3(\mathrm{~W})=40.83 \mathrm{kgf}$
$S 4(2)=S 4(W)=-40.83 \mathbf{~ k g f}$

S1 (3) $=\mathbf{S 1}(\mathrm{W})+\mathrm{S} 1(-\mathrm{A})=-38.75 \mathrm{kgf}$
S2(3) = S2(W) + S2 (-A) $=38.75 \mathrm{kgf}$
S3(3) $=\mathbf{S 3}(\mathrm{W})+$ S3 (-A $)=38.75 \mathrm{kgf}$
S4 $(3)=\mathrm{S} 4(\mathrm{~W})+\mathrm{S} 4(-\mathrm{A})=-38.75 \mathrm{kgf}$

Calculate the single equivalent load

When a radial load (Rn) and lateral load (Sn) are exerted simultaneously,the single equivalent load is expressed by the following equation for $B R$ linear motion system.

$$
\mathbf{R e}=\mathbf{R n}+\mathbf{S n}
$$

The single equivalent load - section $1: \mathbf{R 1 1 , R 2 1 , R 3 1 ~ \& ~ R 4 1 ~}$

$$
\begin{array}{ll}
\mathbf{R} 11=|\mathrm{R} 1(1)|+|\mathrm{S} 1(1)|=90.97 \mathrm{kgf} & \mathrm{R} 21=|\mathrm{R} 2(1)|+|\mathrm{S} 2(1)|=90.97 \mathrm{kgf} \\
\mathrm{R} 31=|\mathrm{R} 3(1)|+|\mathrm{S} 3(1)|=90.97 \mathrm{kgf} & \\
\text { R41 } & =|\mathrm{R} 4(1)|+|\mathrm{S} 4(1)|=90.97 \mathrm{kgf}
\end{array}
$$

The single equivalent load - section 2 : R12,R22,R32 \& R42

$$
\begin{array}{ll}
\mathrm{R} 12=|\mathrm{R} 1(2)|+|\mathrm{S} 1(2)|=86.56 \mathrm{kgf} & \mathrm{R} 22=|\mathrm{R} 2(2)|+|\mathrm{S} 2(2)|=86.56 \mathrm{kgf} \\
\mathrm{R} 32=|\mathrm{R} 3(2)|+|\mathrm{S} 3(2)|=86.56 \mathrm{kgf} & \mathrm{R} 42=|\mathrm{R} 4(2)|+|\mathrm{S} 4(2)|=86.56 \mathrm{kgf}
\end{array}
$$

The single equivalent load - section 3 : R13,R23,R33 \& R43

$$
\begin{array}{ll}
\mathbf{R 1 3}=|\mathbf{R 1}(3)|+|\mathrm{S} 1(3)|=82.15 \mathrm{kgf} & \mathrm{R} 23=|\mathrm{R} 2(3)|+|\mathrm{S} 2(3)|=82.15 \mathrm{kgf} \\
\mathrm{R} 33=|\mathrm{R} 3(3)|+|\mathrm{S} 3(3)|=82.15 \mathrm{kgf} & \mathrm{R} 43=|\mathrm{R} 4(3)|+|\mathrm{S} 4(3)|=82.15 \mathrm{kgf}
\end{array}
$$

(A)ABBA Linear Ball Rail ---- $B R$ series

International Standard Dimension Design

Calculate the mean load

We must calculate the mean value of the varying load to evaluate the life of BR linear motion system.

Step loads

$$
P m=\left[\left(P 1^{n} \times L 1+P 2^{n} \times L 2 \ldots . .+P n^{n} \times L n\right) / L\right]^{1 / n}
$$

Pm : Mean load (kgf)
Pn : Varying load (kgf)
L : Total length of travel (mm)
Ln : Length of travel carrying Pn (mm)
$\mathrm{n}=\mathbf{3}$ when the rolling elements are balls.

Loads that vary linearly

Pm= $(\mathbf{P m i n}+2 x P m a x) / 3$

Pmim : Minimum load (kgf)
Pmax : Maximum load (kgf)

Loads varying sinusoidally

Now we calculate the mean loads of example 1. (step load type) : R1,R2,R3 \& R4
(A)ABBA Linear Ball Rail ---- $B R$ series

International Standard Dimension Design

$$
\begin{aligned}
& R 1=\left[\left(R 11^{3} \times 1000+R 12^{3} \times 2000+R 13^{3} \times 1000\right) / 4000\right]^{1 / 3}=86.7 \mathrm{kgf} \\
& R 2=\left[\left(R 21^{3} \times 1000+R 22^{3} \times 2000+R 23^{3} \times 1000\right) / 4000\right]^{1 / 3}=86.7 \mathrm{kgf} \\
& R 3=\left[\left(R 31^{3} \times 1000+R 32^{3} \times 2000+R 33^{3} \times 1000\right) / 4000\right]^{1 / 3}=86.7 \mathrm{kgf} \\
& R 4=\left[\left(R 41^{3} \times 1000+R 42^{3} \times 2000+\text { R43 }^{3} \times 1000\right) / 4000\right]^{1 / 3}=86.7 \mathbf{~ k g f}
\end{aligned}
$$

Calculate nominal life L

$$
L=\left(\frac{f h * f T^{*} f c}{f w} \times \frac{C}{P}\right)^{3} \times 50 \quad \mathrm{~km}
$$

$B R$ linear motion system of use : BRH20A $2 \mathrm{~L} 4000 \mathrm{NZ0}=>\mathrm{C}=1450 \mathrm{kgf} \quad \mathrm{C} 0=\mathbf{2 5 6 0} \mathbf{~ k g f}$ Given: (\mathbf{P} : the mean load)

$$
\begin{array}{lcrr}
\mathrm{fh}=\mathbf{1} & \mathrm{fT}=1 & \mathrm{fc}=1 & \& \\
\mathrm{~L} 1=[\mathrm{C} /(\mathrm{R} 1 \mathrm{xfw})]^{3} \times 50=69351.5 \mathrm{~km} & \mathrm{~L} 2=[\mathrm{C} /(\mathrm{R} 2 \times f \mathrm{f})]^{3} \times 50=69351.5 \mathrm{~km} \\
\mathrm{~L} 3=[\mathrm{C} /(\mathrm{R} 3 \times f \mathrm{xw})]^{3} \times 50=69351.5 \mathrm{~km} & \mathrm{~L} 4=[\mathrm{C} /(\mathrm{R} 4 \times f \mathrm{f})]^{3} \times 50=69351.5 \mathrm{~km}
\end{array}
$$

calculate static safety factor fs

$$
\mathrm{fs}=(\mathrm{fc} * \mathbf{C 0}) / \mathrm{P}=\mathbf{2 5 6 0} / \mathrm{R} 11=28.14
$$

($\mathrm{P}:$: Maximum single equivalent load $=$ R11 or R21 or R31 or R41)

[^0]: Hardness factor: fh

